Home Networking And IT Information And Discussion

Articles about home, SOHO and small-business IT and networking issues

Videos – Setting up your games console to become part of your home network

Today, I had seen some excellent YouTube videos posted by Netgear on how to integrate your games console in to your home network. They make references to the networks being based on their own hardware, but these instructions apply to any and all home networks no matter what router is at the edge.

Also, when they discussed how to connect the XBox360, PlayStation 3 and Wii to the home network, they mentioned that you can use a HomePlug-based power-line network setup using their PowerLine AV network kit to build the HomePlug segment. The main theme was to connect the HomePlug adaptor to the console via its Ethernet port and select the “wired” connection option as appropriate.

The reason I have liked the videos was because they gave a visual walkthrough of the setup user interaction needed to be performed at each console. They also pointed out if a console needed extra hardware to be part of the home network depending on the connection type. They are also worth having as a reference if you are likely to move your console(s) between locations such as for video-games parties.

TV-connected consoles

Microsoft XBox360

Connections Benefits
WiFi – optional USB adaptor Online Gaming via XBox Live, Games and extras available for download through XBox Live, Windows Live Messenger (MSN Messenger) chat, Web browsing
Ethernet – Integrated Windows Media Center Extender, DLNA-compatible media player

Sony PlayStation 3 (PS3) – includes “PS3 Thin”

Connections Benefits
WiFi – Integrated Online Gaming via PLAYSTATION Network, Games and extras available for download through PLAYSTATION Store, YouTube terminal
Ethernet – Integrated DLNA-compatible media player

Nintendo Wii

Connections Benefits
WiFi – Integrated Online Gaming, Wii Channels, Web browsing, Games and extras available for download to Wii and DSi from Wii Shop online store
Ethernet – optional USB adaptor  

Handhelds

All of these handheld have integrated WiFi as their sole connection means due to their portable nature.

Sony Playstation Portable (PSP)

Benefits: Online Gaming, Web Browsing, RSS Feeds and Podcasts

Nintendo DSi

Benefits: Online Gaming,Game download via DSi Store, Web browsing

25 August 2009 Posted by | Network Gaming, Network Management | , , , , , , , , | Leave a comment

Quick “extended service set” setup routines for WiFi access points

Why a quick setup routine for WiFi access points (or client devices capable of operating as access points)?

It makes it simple for one to extend or improve wireless coverage by adding access points to an existing “extended service set” with a wired backbone. This includes mitigating microwave-oven interference to computer equipment being used in the kitchen by using an access point tuned to Channel 1 installed there. Increasingly this functionality will become more relevant with WiFi-based VoIP cordless phones and come in to its own with location-based WiFi security and home-automation applications. It will also allow a device with built-in Ethernet or HomePlug network connectivity as well as a WiFi client functionality (which typically covers most WiFi-enabled devices) to become a low-power WiFi access point thus making it easy to expand the wireless network by providing infill coverage.

This is achieved by enrolling the device as a client device of the wireless network, then if the device is connected to the same Internet gateway that is visited by the wireless network via the wired network, it sets itself up as an access point with the same SSID and security data as the master access point. It then avoids users having to re-enter network data and make mistakes in setting up multiple-access-point wireless networks.

Methods

Semi-automatic operation – without WPS on master AP

  1. User: Connect to new AP via Ethernet or HomePlug
  2. User: At Web UI for new access point:
    1. Select AP – quick setup
  3. New Access Point: AP becomes wireless client bridge, direct link to host
  4. New Access Point: AP presents list of SSIDs that it can receive and their security status (open or secure)
  5. User: Clicks on SSID matching their home network’s SSID or enters home network’s SSID (for hidden SSID networks), then enters WEP/WPA-PSK key as applicable when the new AP locks on to the desired AP
  6. New Access Point: Perform DHCP test to see if it can find the gateway
    1. If successful, offer to set up as AP, gain MAC of gateway & BSSID of master (& other) APs on SSID,set WEP/WPA-PSK parameter
  7. New Access Point: If user OKs with setting up as AP for network, then switch to AP mode, self-tune to vacant frequency, remain dormant
  8. New Access Point: Once gateway is discovered through Ethernet / HomePlug interface (backbone detect), activate AP mode.

Automatic operation – with WPS on master AP

  1. User: Select Access Point mode, then invoke WPS on new and master AP (PBC “push-push” method)
  2. New Access Point: new AP gains WiFi details through WPS as if it is a client
  3. New Access Point: become wireless client bridge on these details until connected to wired backbone
  4. New Access Point: detect wired backbone (via Ethernet, HomePlug), self-tune, become AP with WPS “peer” status

Limitations

Some details may not be able to be conveyed to the new access point, especially if the access point is of lesser capability than the master access point. This may be of concern when extending the coverage of a wireless hotspot and want to enforce client-computer isolation at the access point. The client-computer isolation functionality should be achieved at the link-layer level by the hotspot gateway router thus allowing for media-independent client isolation. It can then cater for hotspots that use wired media (Ethernet, HomePlug, MoCA TV-aerial cabling) to extend WiFi coverage or connect computers supplied by themselves or their guests to their Internet service.

Similarly there may be issues with setting up a multi-LAN wireless network where there is a VLAN set up on the wired network and multiple SSIDs that are radiated by the same access point. This kind of setup describes a “private” LAN segment and a “public” or “guest” LAN segment

Conclusion

Once the WiFi equipment vendors look at using “quick-setup” methods for WiFi access points, this can allow home and small-business users, especially those with limited computer skills, to set up their wireless networks to suit their needs more easily.

18 August 2009 Posted by | Wireless Networking | , | 3 Comments

SmallNetBuilder – Small Network Help – 802.11n Headed for September Ratification

 SmallNetBuilder – Small Network Help – 802.11n Headed for September Ratification

Cited text from SmallNetBuilder article

SmallNetBuilder has learned from a reliable source that the final issues in 802.11n have been resolved in this week’s meeting of the IEEE TGn in Montreal.

The draft standard is now expected to successfully pass through the final steps required for a ratification as a final standard in September. This is four months earlier than the currently published January 2010 date.

The key issue holding up the standard has been the mechanisms to be used to prevent interference between 802.11n and Bluetooth devices.

My Comments on this stage for 802.11n

Once this standard is ratified, most of us can now buy 802.11n-compliant wireless-network hardware while being sure it will work with other manufacturers’ equipment.

But the main issue with this ratification is whether most hardware manufacturers will roll out firmware for existing draft-specification 802.11n hardware that is in the field. This is of importance whenever newer final-specification hardware is deployed, because there could be compatibility issues between the different versions of the standard.

A good step to go about this is to go to manufacturers’ Websites and look for upgrade packages for any 802.11n hardware. In the case of laptops, use the laptop manufacturer’s Website or “quick-update” routine to check for updates for the wireless-network subsystem. If you run an “n-box” or other equipment serviced by your Internet service provider, check with the provider if there is new firmware in the pipeline for the hardware. This may be dependent on whether the device’s manufacturer is rolling out compatible firmware for provider-distributed devices.

In some cases, you may need to run your 802.11n wireless network segment on a “mixed” setup which observes best compatibility with 802.11g devices even if the segment is running only with “n” devices.

6 June 2009 Posted by | Wireless Networking | , | Leave a comment

Network Connectivity Joins the AV Club – or Ethernet connectivity via AV equipment-connection cables

 Network Connectivity Joins the AV Club | ABI Research

Cite from press release

Over the past few weeks, a couple of announcements around consumer electronics connectivity have caught my eye. In late April, the DiiVA Interactive TV standard was announced after a year of development, with the backing of mainstream CE manufacturers LG, Panasonic, and Samsung, along with the Chinese government and a number of major Chinese CE manufacturers. The DiiVA standard was designed to integrate HD Video, multi-channel audio and bi-directional data (Ethernet and USB) in a single cable. Then, just last week, the HDMI Licensing group announced the HDMI 1.4 specification, which will integrate Ethernet connectivity within the HDMI cable.

My Comments on this concept

The concept behind the DiiVA stamdard and HDMI 1.4 is to cut down the “spaghetti junction” that exists behind a home-entertainment system by avoiding the need to run an Ethernet cable between each Internet-enabled AV device and the home network.

The current problem is that most Internet-enabled equipment that is in the field will require use of a direct network connection, typically an Ethernet cable, even if the AV setup includes equipment that has the new connections. As the standards gain traction, users will have to work out which component will be the interface to the home network; and some equipment will need to always have a direct connection to the home network as well as support for Ethernet connection via the new standards.

When the standard reaches momentum, I would still prefer that certain classes of equipment always have an Ethernet socket or MoCA/HomePlug AV interface. Primarily, I would require that a television set (with built-in TV tuner); and a surround-sound receiver would have the home-network interface. Similarly, I would require that devices performing the role of a surround-sound receiver like “home theatre in box” systems and single-piece “soundbars” be equipped with the home network connectivity. This is typically to allow one to assure network connectivity to all consume AV-equipment setups that use these connections, as these setups evolve. Some AV peripherals like optical-disc players or games consoles may just rely on their network connectivity coming via the AV connection.

Another factor that needs to be worked out with this connection setup is making sure that the network-enabled AV setup just works. Issues that can impede this ideal could include “network collision loops” where devices that are directly connected to the home network and are interconnected with network-enabled connections create an infinite data loop. This can lead to extensive operational and performance difficulties, similar to when a laptop is connected to a WiFi router with an Ethernet cable while its WiFi network functionality is active. This issue could be addressed by the use of a priority-based algorithm for determining the data flow in the AV setup.

Once these issues are addressed, these connection standards should then lead to trouble-free network-enabled home AV for all setups no matter how sophisticated they are. Similarly, this could lead to such concepts as the AV devices providing extra network services such as in-fill WiFi access points or Ethernet switches.

4 June 2009 Posted by | Future Trends, Network Management, UPnP AV / DLNA | , , | 2 Comments

Use of WiFi technology for safety and security

Ekahau Enhances Staff Safety of Hospital Psychiatric Wards

My comments on this issue

The Ekahau press release that is linked to from this article details the use of a WiFi-based staff badge that can be used to locate particular staff members in the hospital’s psychiatric ward and deliver messages to them.  But the feature that drew me to this device was the remote panic-alarm functionality that sends its signal via the hospital’s WiFi network.

Any panic-alarm or medical-alert system that is deployed in the home typically requires a transmitter and receiver working on a dedicated frequency, in a similar manner to garage-door openers.  If they are monitored by an external agency, the devices then transmit their alert signal to the monitoring station via a dedicated telephone or cellular circuit.

Now there is a different reality being brought about with cost-effective Internet service provided to WiFi-based wireless home networks in many households. This has included the concept of providing telephone and multi-channel television service through the same pipe, all thanks to the magic of IP-based packet networks. The classic circuit-based signalling methods used by these alarm devices are becoming less relevant in the packet-based signalling. Similarly, most users will want to benefit from the infrastructure that is laid down in a home network, such as the establishment of a multi-access-point WiFi network with a HomePlug-based backbone to cover a difficult house.

The Ekahau setup could be scaled back to allow an alarm installer or broadband Internet provider to sell a similar system in to the home. Any moveable sensor like a medical-alert pendant could make use of the existing WiFi network for transferring its data to the monitoring facility. It could then lead to e-mail and / or text (SMS) messaging if the device is triggered. Similarly, the unit could be used to deal with “wandering” behaviour that can be part of dementia-related illnesses by alerting if the person goes out of range of the WiFi network. As well, such systems could support local monitoring through the use of a local server device, thus providing their output through a Web page, platform-specific “widget” or desktop application.

This setup may appeal to broadband providers who want to gain more “average revenue per unit” by reselling basic security services as part of their package. It could also be a way of achieving a legitimate upgrade path for currently-deployed building security systems, especially in the context of the “switched-on” Internet-enabled home.

21 May 2009 Posted by | Home automation and security, Wireless Networking | , , | Leave a comment

Secure streaming from Windows Media Player via the Internet

W7 RC Secure WMP Internet Streaming is Impressive | DigitalMediaPhile.com
further details on handling of network connection speeds

Windows 7 Enables Secure, Remote PC to PC Streaming via WMP and Windows Live ID | eHomeUpgrade

My comments on this feature

There are certainly a few key applications for this feature.

One main and obvious application would be to gain access to music, pictures or video held at home from a remote location like the holiday home, car or small business. This would be achieved through the use of technologies like 3G or WiMAX wireless broadband; or simply ADSL broadband depending on the location.

Another application similar to what Barb Bowman was using as her demonstration setup in the articles she had posted on this feature is a household with two or more individually-controlled Internet services. This may be a student or other person who is paying board and lodging to you; a live-in housekeeper or nanny; or an elderly or disabled relative or friend who needs continual care. These people may want to operate a separate Internet service that is under their own control but may want to annexe both the primary household’s and their own media resources.

But. as with any new technical implementation, there are questions that need to be asked

Could this setup work over a VPN such as one used to facilitate remote access to a small business’s data? This setup may be of benefit to a shop or small office where some of the music or pictures used as part of merchandising at the business may be held on the home computer.

Could this allow a UPnP AV / DLNA device to pull up media from the remote location via the Windows Media Player “gateway”? In this setup, a DLNA-compliant Internet radio installed at the remote location points to the UPnP Media Server that is part of the remote computer’s Windows Media Player. This would be pulling up media from the local computer’s Windows Media Player setup as in your described installation.

7 May 2009 Posted by | Network Management, UPnP AV / DLNA | , | 1 Comment

Bluetooth 3.0 with High Speed Transfer – What does this mean?

Bluetooth Special Interest Group press release

WiFi Planet article on Bluetooth 3.0

My Comments

Bluetooth has hit the “big 3” by introducing a high-throughput version of its wireless personal network specification. This same technology used for sending pictures or phone-number data between mobile phones in the same space or streaming sound between mobile phones and car handsfree kits can do such things as wirelessly transferring one’s music library between a laptop computer and an MP3 player or “dumping” the contents of a digital camera to a computer.

It primarily allows data streams conforming to the Bluetooth protocols to be transmitted over the 802.11b/g WiFi network just by using the media-transfer levels of that specification. This takes advantage of the fact that a lot of the smartphones and the laptop computers have Bluetooth and WiFi wireless technology built in to them; and that premium MP3 players like the Apple iPod Touch will offer WiFi and Bluetooth on the same device. This is a situation that will become more common as chip manufacturers develop “all-in-one” WiFi / Bluetooth radio chipsets. For applications requiring a small data stream, the device just engages a single Bluetooth transceiver with the regular Bluetooth stack, which can save on battery power.

Intel had developed “My WiFi” which is a competing standard for a personal area network based on the WiFi technology with the devices using the full list of protocols and standards applicable to regular LAN applications. The idea was to have the laptop “split” its wireless-network ability into a client for a WiFi LAN and a very-low-power access point for a WiFi LAN which is the personal area network. At the moment, this technology is limited to laptops based on the Centrino 2 platform and requires that the laptop, being a general-purpose computer, becomes a “hub” device for the personal area network. But what could happen could be that other WiFi chipset vendors would license this technology and implement it into their designs, which could extend it towards other applications.

This would lead to a highly-competitive space for technologies that connect the wireless personal area network together, especially if the primary device of the network is a laptop computer. It could also incite manufacturers of devices like digital still and video cameras to include WiFi and Bluetooth in to these devices.

Who knows what the future will hold for the wireless personal area network.

23 April 2009 Posted by | Mobile Computing, Wireless Networking | , , | Leave a comment

Feature Article – Understanding and Managing your HomePlug network

If you want to have your HomePlug network segment working properly for you and your needs, you will need to be able to manage it properly. This article talks about how to connect the HomePlug devices for best results and how to organise the devices in your HomePlug segment for privacy or improved network performance.

Understanding the typical AC supply

A mains “phase” typically describes a single standard-voltage AC circuit from the street transformer through to your premises. In a typical residential power service, where the general-tariff power passes through one electricity meter, all the power outlets are on the one phase. Most US residential installations have two phases due to the low standard voltage but HomePlug has been designed to work around these installations.

The electricity meter for a typical household AC supply is considered a “firewall” for the HomePlug network segment that operates on that supply because of the way it works. This may be a problem for a multi-building home network where there is another building like a bungalow that is metered separately.

Electrical accessories and the HomePlug network

For best performance, you should have the HomePlug devices plugged directly in to the power outlets. But this is not always feasible due to distance from the outlets or the number of outlets available near the device.

An extension cord can be used for a HomePlug setup as long as it is of the right type. For short runs up to 10 metres, you can use the regular domestic extension cord that is typically used for the vacuum cleaner or portable radio. You will need to use “tradesmen-grade” or “caravan” extension cords for longer runs. As well, daisy-chained extension cords may not be beneficial to the HomePlug signal.

As far as powerboards / power strips and “double adaptors” are concerned, make sure that the HomePlug device is connected to one without surge-suppression or line-conditioning technology. On the other hand, you could use one equipped with surge-suppression or line-conditioning technology if it has an outlet that is marked “HomePlug” and you plug the HomePlug device in to that outlet. You can also get around this problem by plugging your HomePlug device in to one of the outlets on a regular powerboard and plug a surge-suppressor powerboard which has your computer equipment in to another of the outlets of the regular powerboard. A recent-issue HomePlug-Ethernet bridge that has a built-in power outlet or one of the surge-suppressor powerboards which have integrated HomePlug-Ethernet bridge functionality can solve the problem very easily.

Managing your HomePlug network

The network is typically managed with software that is supplied with your HomePlug hardware. This is usually in the form of a configuration tool, typically a version of “PowerPacket” for most operating systems. In some cases, you may have to download the software from the device manufacturer’s Website. Infact, the Solwise website has most of the software available for nearly all of the operating systems.

On the other hand, some devices, typically HomePlug wireless access points and routers can be managed by logging in to a particular Internet address, similar to managing an Internet router.

A recent trend that has emerged is for HomePlug AV devices to implement “SimpleConnect” which uses push-button control to enrol devices to a HomePlug network segment.

HomePlug Device Identifier

This value is unique to each device and is known as a Device Password in a HomePlug 1.0 network. This information is typically printed on a label that is attached to the HomePlug device itself, alongside the MAC address for that device. It may also be attached to the device’s packaging.

HomePlug Network Segment Identifier

This identifier, usually set to “HomePlug” but can be set by the user to a different value, is known to the devices that are part of a HomePlug network segment. It is typically known as a “Network Password” for both the HomePlug 1.0 or “Private Network Name” for some HomePlug AV networks and can allow multiple HomePlug network segments to exist on the one mains phase.

Configuring a Network Segment To A Particular Identifier

You will have to obtain the Device Identifiers from each of the HomePlug devices that are to be part of the Network Segment that is having that identifier. Then, make sure that they are plugged in to the AC supply and can be seen by the HomePlug device you are doing the configuring from. This can be checked using your configuration software that has come with that HomePlug device.

Add all the devices to your network by entering their Device Passwords in to the configuration software. Then go to the “Privacy” or similar option and set the Network Password for all devices that are on your network to make the segment

If the devices use HomePlug AV SimpleConnect, you just need to press the button on the device which is a member of the segment you want to enrol your other device in, then press the button on the device that is to be enrolled.

What you can do

“Pushing out” a HomePlug installation

As I have mentioned before in my feature article on multi-building home networks, you may have to “extend” your HomePlug network if you can’t get proper network operation on some of the mains circuits such as in remote buildings.

This involves creating two different HomePlug segments, with each segment having at least one HomePlug-Ethernet bridge on the same mains service. Then the Ethernet connection from a bridge associated with one HomePlug segment is connected to the Ethernet port on the bridge associated with the other HomePlug segment. These can be connected directly or via an Ethernet switch so one can run network devices from the Ethernet link.

The above setup would then have to be deployed halfway between the HomePlug devices that are trying to communicate such as in an outbuilding nearest the main house like a garage.

HomePlug AV and 1.0 in the same premises

HomePlug 1.0 and AV can exist on the same mains service but will work as separate network segments in a manner which doesn’t compromise their bandwidth. The separate network segment issue can be mitigated with a Ethernet bridge device from each technology connected to each other or to the LAN ports of a router or Ethernet switch.

Conclusion

Once you know how to understand and manage the HomePlug powerline network, you can gain a lot more out of this technology and make it work well in your building.

17 February 2009 Posted by | Feature Article, HomePlug powerline networking, Network Management | | 1 Comment

Network Management Hierarchy Terms

Term Description Example

Network Areas

   
Subnet or Logical Network The network that exists behind a router and has a particular IP addressing scheme. This is independent of the media that the devices connect to the router with. All of the computers and network devices that connect to the Internet through the router – the typical home or small business network.
Network Segment A group of devices that connect through a particular network medium or identified part thereof. An Ethernet LAN, HomePlug network with the same Network Password or WiFi Extended Service Set (WiFi AP(s) with a common ESSID and security parameters; and communicating with each other)

Devices

   
Edge or Gateway A device that is between two or more logical networks The broadband router
Bridge A device that is between two or more network segments but part of the same logical network Ethernet switch, HomePlug-Ethernet bridge, WiFi access point
Device; Node, Endpoint Any computer, games console or other device that benefits from the network A PC or laptop computer, the XBox 360

14 February 2009 Posted by | Feature Article, Network Management | Leave a comment

HomePlug in the commercial or institutional environment

Often HomePlug powerline networks are, by the name of the technology, pitched at residential networks, typically single-dwelling homes. But can a HomePlug powerline network, whether a v1.0 Turbo or an AV network exist in a block of flats, a shop or a small office?

There are many applications for the use of a HomePlug in the commercial or institutional environment. One would be to set up a network printer or other network-enabled device in a manner that allows the location to be changed at a moment’s notice. This would be of importance for equipment likely to be on the shop floor for example.

Another application would be to set up a multiple-access-point wireless network to extend the coverage of the wireless hotspot in your café or bar. One of the HomePlug wireless access points can easily do this job especially on a temporary setup or setups where you need to remove the access point at night as a security measure.

You may also want to use HomePlug for establishing a temporary network as part of an event that you host at a town hall, school assembly hall or other community facility, thus avoiding extra cables or unreliable wireless networks. Then there is the ability to try out computer-equipment locations for a certain amount of time before you have the electricians pull the Ethernet cabling to the final location.

An example of this kind of setup

At the moment, Devolo, a German company who manufactures HomePlug network devices, have “taken the bull by the horns” in its home market. They have run a German-language Web portal, about using HomePlug as a solution for establishing computer networks in schools. On this page, there are examples of three schools who have established HomePlug network segments that are known to be in full service.

AC power issues

The main issue is that AC power supplies which supply most of these locations aren’t similar to the typical residential AC power supply. These supplies typically involve a “multi-phase” wiring plan that is typically set up for larger motors or other large loads. This shouldn’t be really of concern for setups covering a flat, small shop or office because most of the power wiring is similar to that of a regular house. In the case of shops and other premises that have special equipment like large commercial refrigeration setups, the special equipment is typically wired to its own group of phases while the ordinary power outlets are wired to a single phase, in a manner similar to a domestic setup.

Similarly the large motors like those that typically drive commercial refrigeration / air-conditioning or lifts and escalators can yield interference as they are used. Similarly, arc welding and similar work equipment can increase the amount of interference in the power line. Another issue to remember is that there is very little chance of a HomePlug segment working if you plug any of the HomePlug devices in to one of those three-phase – single-phase powerboards used primarily to run large clusters of standard lighting or cooking equipment from a three-phase outlet. This is usually due to the use of transformers and different phases in these installations.

Testing a HomePlug network segment

When you set up a HomePlug powerline network segment in any of these premises that you haven’t dealt with before or where significant work has been done, you may have to do a test run at the locations you intend to set up your installation at before you run the installation full-time.

You could run the “PowerPacket” utility that comes with most HomePlug-Ethernet bridges to observe the link quality of your HomePlug segment and the existence of the other HomePlug devices that you have plugged in at the locations you want to use. The latter observation can be useful if some of the ordinary power outlets in the premises are wired to different phases. You can also observe changes in link quality when any of the heavy motors are in operation such as whenever someone is using the lift or the refrigeration compressor that serves the commercial refrigeration installation comes on.

Another test would be to do a simple network-based file-copy between computers connected to the HomePlug devices and time that copy process for actual throughput measurement.  At this time, it may be worth looking for changes in network behaviour when any of the heavy motors are in operation as in the situations described above.

But before you do these tests, make sure that the HomePlug equipment you intend to deploy in the commercial environment works properly at your home or at a location where you know from experience this kind of equipment has worked. Also, make sure that you can return the HomePlug equipment to whoever you bought it from if it doesn’t work or be able to buy the equipment “on approval”.

Other setup issues

Another good practice with deploying HomePlug in these locations is to set up an installation-unique Network Password for the installation. This can be easily done with HomePlug AV devices that have “Simple Connect” push-button setup because the HomePlug AV devices work out a unique code for that installation. On the other hand, you would have to use the setup software like PowerPacket to align all the devices (which have the Device Passwords physically on them) to the same Network Password. This allows your HomePlug network segment to work in a secure fashion.

Once you have used HomePlug in these kind of setups, you can be able to know what it can and cannot do in a particular location and defeat the common limitation of HomePlug being just for the home.

7 February 2009 Posted by | HomePlug powerline networking, Network Management, SOHO / Small business computer setups | | Leave a comment